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Abstract: It is often necessary in science to identify samples that have features in common. For example, one 
might wish to find those NMR spectra in a large database that have similar patterns of resonances or identify 
samples amongst a large number of specimens of river water that analysis shows have similar biochemical 
oxygen demand, heavy metals concentration, organochlorine content, and so on. 

The determination of relationships among samples is a task to which Artificial Intelligence is increasingly 
being applied. In this paper, we investigate the Self-Organizing Map (SOM), whose role is to perform just this 
kind of task; in other words, to cluster data samples so as to reveal the relationships that exist among them. The 
self-organizing map is a method, which, unusually, combines a mathematical foundation with an intuitive 
interpretation. 

We will describe how a simple SOM operates, what kinds of data may be analyzed using one, and how a 
computer program to run a SOM can be written by anyone-whether student or teacher-with modest programming 
skills. Portions of sample source code are included in this paper, and program listings for the examples that are 
discussed are available in the supporting materials. The supporting files can also be used to see the maps in 
operation. 

Introduction 

Let us begin at the end, so to speak, by considering a 
completed map that illustrates what the SOM is aiming to 
produce. Figure 1 shows the result of an analysis of a typical 
set of data (individual color versions of all figures are 
available in the supporting materials). Running one of the 
programs described in this paper can generate this type of map. 

The two-dimensional map shown in Figure 1 resembles a 
contour view of a land map, and it is divided into different 
regions distinguished by their color. Every sample within the 
database used to create the map can be allocated to a particular 
square in the map, and similar samples are allocated to squares 
that are close together. Similar samples are thus clustered, and 
this clustering of samples helps the user to identify the factors 
that samples have in common. In this way the map brings 
about a kind of rationalization of the data. The mechanism by 
which this is accomplished forms the focus of this paper. 

Large collections of data in which there are multiple non-
linear correlations between the different samples are generated 
routinely in chemistry; indeed, gathering and analyzing the 
data that constitute such sets might be regarded as one of the 
central activities in science. 

To make full use of the data, one wants to tease out the 
relationships that link different samples, but extracting these 
relationships may be difficult, especially if each sample is 
made up of many separate items of data (such as the intensity 
of light absorption at a number of different wavelengths, or the 
results of elemental analysis of mixed minerals). It is not 
always possible to express the relationships in a readily 
digestible algebraic form, so numerical methods, such as 
Principal Components Analysis [1] may be used to seek 
regularities in the data. However, these methods are limited 
when analyzing complex data sets in that they generally yield 

either an abstract representation of the data or one that is cast 
in three, four, or more dimensions. This introduces difficulties 
in interpretation for any users who are not specialists in the 
field of numerical analysis. 

Often a visual rather than an analytical representation of the 
data will effectively reveal how samples are related to each 
other, and in such cases a SOM may be used to arrange the 
data so that useful relationships among the parameters are 
presented in a readily interpreted form. A SOM is normally 
constructed in two dimensions, and this makes its visual 
interpretation particularly straightforward. 

Principles of the Self-Ordering Map 

The development of the self-organizing map (or self-
ordering map) can be traced back to pioneering work by 
Kohonen [2]; in fact, such maps are the end result of analysis 
by what are known as Kohonen networks. The SOM is a type 
of neural network (to be discussed in a later paper), in which a 
number of identical simple processing units are linked together 
and function co-operatively. 

The principle steps in the construction of a map are outlined 
in this section. Later, each step will be discussed in greater 
detail and illustrated with segments of Java source code. Those 
unfamiliar with Java should find the code relatively 
straightforward to understand and should have little difficulty 
in translating it into Fortran, Basic or other computer 
languages.  

A SOM is a computer program whose role is to compress 
multidimensional data on to a map of lesser dimension 
(usually two). At its heart is a small memory with a simple 
structure. In this memory the SOM stores its accumulated 
knowledge at a set of nodes. Approximately 30 to 5000 nodes, 
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Figure 1. A typical completed self-organized map. 

depending upon the scale of the problem, are arranged in a 
regular two-dimensional structure, in which each node has 
three, four or six, neighbors (Figures 2a, 2b, 2c). The nodes 
form a triangular, rectangular, or hexagonal array [3]. 

At each node is stored a set of weights (Figure 3). It is these 
weights that constitute the memory of the map; the 
calculations that are performed by the algorithm consist of the 
determination of suitable values for each weight. Once 
appropriate values for these weights have been found, the 
completed map, which typically takes the sort of form shown 
in Figure 1, is ready for use. 

At the start of the calculation, the SOM knows nothing 
about the data it is to interpret, and, because the weights 
represent the accumulated knowledge of the map, they initially 
are set to random values. As the map develops, the weights 
gradually change according to the procedure given below. The 
effect is that the memory of the map, stored in these weights, 
slowly evolves to embody a useful representation of the data. 

As the map learns about the data, it organizes it in ways that, 
one hopes, will reveal valuable correlations. The map receives 
no feedback from the user or the database; this is a type of 
unsupervised learning-in other words, the algorithm learns 
about the data merely by inspecting it; no outside intervention 
or guidance from the user is necessary. 

Before considering the individual steps involved in 
constructing a map, the reader may wish at this stage to go to 
the supporting materials and run the �colourmap� application 
to see how a map such as that shown in Figure 1 evolves. 

Let us see now how this learning occurs. Suppose we have 
access to a large set of data, in which every data sample 
consists of three values. A portion of such a set is shown in 
Table 1. 

When constructing a SOM, the number of weights at each 
node is always set by the algorithm to equal the number of 
parameters for each sample, so in this example each node 
stores three weights. 

The algorithm proceeds in a series of cycles, as follows. 

a 

b 

c 

Figure 2. The arrangement of nodes in (a) triangular, (b) square and 
(c) hexagonal maps. 
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Table 1. A Portion of a Data Set for Analysis 

Sample Parameter 1 Parameter 2 Parameter 3 
S1 6.7 1.8 2.3 
S2 2.9 0.9 -1.4 
S3 8.2 6.9 11.8 
S4 4.8 4.8 -1.8 
S5 2.1 0 -1.9 
S6 6.7 0.2 0.1 
S7 11.1 0.7 -12.1 
... ... ... ... 

 

 
Figure 3. Node weights in a square map. 

Initialization. At the start of the calculation, the weights at 
all nodes are set to random values. 

Selection of Sample. A sample is chosen at random from 
the data set. 

Calculation of Deviations. The value of each parameter for 
the chosen sample is compared in turn with the corresponding 
weight at the first node and the total difference between 
sample values and node weights is calculated. Thus, if the 
weights at the first node were {2.7, 4.1, 0.4} and sample S5 
were chosen, the difference could be calculated as the sum of 
the absolute magnitude of the differences: 

 1 2.7 2.1 4.1 0 0.4 ( 1.9) 7.0n
i iid w p== − = − + − + − − =∑  

in which n is the number of parameter values, wi the ith weight 
at the current node, and pi the ith parameter value for the 
current sample. Alternatively, the Euclidean distance could be 
used: 
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Any �reasonable� method of calculating the difference 
between sample parameters and node weights may be adopted. 
This difference is determined for every node in the map. 

Selection of the Winning Node. The winning node is 
identified as the one whose weights most closely resemble the 
sample data; that is, the node for which the difference 
calculated in step 3 is a minimum. 

Modification of Weights at the Winning Node. The node 
weights at the winning node are now modified slightly to make 
them more closely resemble the sample data. 

 ( )* * 1i i iw w pα α= − +  

In this equation wi* represents the ith weight at the winning 
node, pi is the corresponding parameter value for the sample 

being used, and α is a learning factor whose size determines 
the extent to which the node weights are adjusted. 

Modification of Weights at Neighboring Nodes. The 
adjustment of node weights is not limited to the winning node, 
but also extends to nodes nearby. Node weights in the 
neighborhood of the winning node are modified in the same 
way as those at the winning node, but by an amount that 
diminishes with distance from it. 

Selection of a Fresh Sample. The learning factor, α, which 
scales the size of the adjustment to node weights, is now very 
slightly reduced. This ensures that modifications to the node 
weights, which may be quite large at the start of the 
calculation, gradually diminish as the algorithm runs. If the 
node weights have not converged, the algorithm returns to 
step 2. 

How Might We Use SOMs? 

After a large number of passes have been made through the 
sample data the node weights will converge to stable values; 
further cycles will produce little further change. Before we 
consider the steps outlined above in a little more detail, let us 
consider how we might use the completed map. There are two 
principle ways in which a SOM can be of value. 

Recognition of Dominating Similarity Factors. Figure 1, 
in which the nodes are drawn in a color determined by the 
node weights, shows how nodes with similar weights cluster 
together. This suggests one way in which the map might be 
used. Consider what happens when we take a sample from the 
data set and feed it into the map. The algorithm inspects each 
node to find the one whose weights most closely resemble the 
sample parameter values and identifies it as the �winning 
node�. We can say that the sample points at this node. Every 
sample must point at some node in the map, and we recognize 
that samples that point to the same node or to nodes that are 
close together on the map must share similar parameter values. 

Now it may seem that the map has not done anything very 
smart in pointing out to us that several samples in the database 
are similar. Could we not have recognized this ourselves by 
inspecting the data and picking out the �similar� samples? If 
the data are very simple (and very limited in number) this 
might well be possible; but if each sample consists of perhaps 
fifteen or twenty parameter values, and there are many 
samples, searching for similar samples �by eye� is not 
practicable. 

The map, in identifying similar samples, has thus revealed 
regularities that it may be difficult, or impossible, to spot 
without the help of some kind of automated procedure. 

Once the map has highlighted similar samples for us, we can 
try to rationalize the clustering of samples. By inspecting the 
parameter values for samples that cluster together, we may be 
able to understand what features of the parameters cause the 
clustering. For example, using SOMs, Barlow showed that the 
biological activity of histamine H2 agonists could be related to 
the electrostatic potential around them [4], Zupan found that 
automotive paint samples could cluster spontaneously into 
groups which differed in their resistance to weathering, and 
that this could then be related to the composition of the paint. 
Cartwright and Kiernan [5] have shown that geochemical and 
analytical data, such as sample depth and oxygen index, can be 
used to cluster coal samples according to their potential value 
in yielding hydrocarbons. 
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In each case useful deductions can be made by allowing the 
SOM to cluster data, and then inspecting these clusters to see 
what characteristics link the different samples together. 

Prediction. Suppose we have prepared a complete map 
through analysis of some suitable database. If a sample is 
drawn from the database and fed into the map, we know that it 
will point to a particular node. However, we are not restricted 
to using samples drawn only from the database that was used 
to construct the map. If a fresh sample, not contained within 
the database used to generate the map, is fed into it, the new 
sample will itself point to some particular node, and by 
comparing the sample with others that point to the same 
region, we can gain useful information. 

This is particularly helpful if the value of one or more 
parameters for the new sample is unknown. An interesting 
example of this technique has been reported by Walker, Cross 
and Harrison [6] using Growing Cell Structure Networks 
(GCSN), a close relative of the SOM. They analyzed data from 
fine-needle aspirates of breast tissue taken from women during 
the diagnosis of possible breast cancer. A database of 692 
samples, each sample consisting of eleven values, was 
assessed using a GCSN. The map organized the data in such a 
way that samples derived from patients who tested positive for 
breast cancer were clustered in one region, and samples 
derived from patients who tested negative were clustered in 

another part of the map. By then feeding in data from patients 
whose diagnosis was uncertain and noting to which region of 
the map the sample pointed, it was possible to use the trained 
map as a diagnostic tool. This kind of procedure is typical of 
the predictive use of the SOM, and is probably its most 
powerful and useful feature. 

Coding of a self-Ordering Map 

In this section we consider the coding of a SOM in a little 
more detail. 

Initialization. As a first step the memory of the map must 
be cleared. For the examples that are used to illustrate this 
paper the map is square, and of dimension mapsize × 
mapsize. The node weights are stored in the three-
dimensional array som_weights[][][], in which the 
first two dimensions are the (x, y) coordinates of the map 
nodes, and the third identifies a particular weight at that node. 
Initially, therefore, we set each entry in this weights array to a 
randomly chosen value (though it is possible to set them to a 
single starting value without adversely affecting the 
calculation). The value is generally chosen to lie within the 
range of values spanned by the data values, if this is known in 
advance. 

//  Initialize the node weights with random values between 1 and mapsize. 
 
mapsize1=mapsize-1; 
for (i=0; i<mapsize; i++) 
       { 
           for (j=0; j<mapsize; j++) 
           { 
               if (zeroweights)  // Nodes start with identical weights 
               { 
                   som_weights[i][j][0]= mapsize1/2; 
                   som_weights[i][j][1]= mapsize1/2; 
                   som_weights[i][j][2]= mapsize1/2; 
               } 
               else              // Nodes start with random weights 
               { 
                   som_weights[i][j][0]=1+(mapsize1)*rs.nextFloat(); 
                   som_weights[i][j][1]=1+(mapsize1)*rs.nextFloat(); 
                   som_weights[i][j][2]=1+(mapsize1)*rs.nextFloat(); 
               } 
           } 
       }        

Figure 4 shows how the map might look at the start of a calculation where the three weights at each node have been interpreted as 
RGB values to make it easier to follow the development of the map. Because the weights have been chosen at random, the initial 
colors of the nodes are also random and the map shows no discernible pattern. 

Sample Selection. In this first example, every sample in the database consists of three values. We could start the calculation by 
generating a database of samples, but it is simpler to create a fresh random data point (xa, ya, za) whenever a new sample is needed. 
(On the face of it, it seems remarkable, even counterproductive, to use random data. How can the map find order in entirely random 
samples? Recall, however, that the ordering that occurs is spatial, that is, samples are spread across the map in such a fashion that 
samples with very different parameter values are positioned far apart from each other. Ordering is thus possible even of random 
data!)  

/* Generate a random data point to feed into the map. */ 
                   r=280.0*complexity*rs.nextFloat(); 
                   theta=8.0*rs.nextFloat(); 
                   phi=3.0*rs.nextFloat(); 
                   xa=r*Math.sin(theta)*Math.cos(phi); 
                   ya=r*Math.sin(theta)*Math.sin(phi); 
                   za=r*Math.cos(phi); 
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Calculation of Deviation. The sample data (xa, ya, za) are now compared, in turn, with the weights at each node. In this program, 
we sum the absolute differences between the values in the sample and the corresponding weights at the node although, as 
mentioned above, other ways of calculating this difference exist. 

diff=Math.abs(xa-som_weights[i][j][0])+Math.abs(ya-som_weights[i][j][1]) 

  +Math.abs(za-som_weights[i][j][2]); 

Selection of the Winning Node. The variable diff stores the total difference evaluated in step 4.3. If this difference is the 
smallest found so far in the calculation, the current node is the best yet, and its coordinates (i, j) are stored. 
/* Find the winning node. Its position is besti, bestj. */ 
 
                   besti=0; 
                   bestj=0; 
 
/* bestdiff is the smallest difference found in the current cycle between 
  the node weights and the current data point.  We start by setting it 
  to a number much larger than any difference in the actual calculation 
  will be. */ 
 
                   bestdiff=500.0;  
                   for (i=0; i<mapsize; i++) 
                   { 
                       for (j=0; j<mapsize; j++) 
                       { 
 
/* diff is calculated at this point, as shown in step 3 above. 
  If diff is smaller than the best difference so far, update  
  bestdiff, and store the position of the winning node. */ 
 
                       if (diff<bestdiff) 
                           { 
                               bestdiff=diff; 
                               besti=i; 
                               bestj=j; 
                           } 
                       } 
                   } 

Modification of Weights at the Winning Node. Once the winning node has been found, the weights at this node are updated so 
that they more closely resemble the data point just used. The following lines accomplish this. 

som_weights[besti][bestj][0]=som_weights[besti][bestj][0]*(1.0-alpha)+alpha*xa; 
                                   
som_weights[besti][bestj][1]=som_weights[besti][bestj][1]*(1.0-alpha)+alpha*ya; 

som_weights[besti][bestj][2]=som_weights[besti][bestj][2]*(1.0-alpha)+alpha*za; 

alpha is a factor whose size determines how much the node weights are moved in the direction of the data sample. 
Modification of Neighborhood Weights. A similar modification is made to the weights of neighboring nodes, with the size of 

the adjustment determined by the value of alpha, diminishing with distance from the node. The coding here is very crude, but this 
step is fast so sophistication is not required. 

            
/*  In many SOMs the "neighbourhood" around each node within 
  which weights are updated consists of the entire map at  
  the start of the calculation, and diminishes with time.  
  In this example the size of the neighbourhood remains  
  unchanged, although the size of the weight adjustment  
  diminishes as the calculation proceeds. */ 

alpha=0.3*adjustment; 
     mult2=0.06*adjustment; 
     for (i=besti-2; i<=besti+2; i++) 
        { 
           for (j=bestj-2; j<=bestj+2; j++) 
           { 
     if (i>=0 && i<mapsize && j>=0 && j<mapsize && !(besti==i && bestj==j)) 
             { 
             if (i>besti-2 && i<besti+2 && j>bestj-2 && j<bestj+2) 
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                { 
                    som_weights[i][j][0]=som_weights[i][j][0]*(1.0-mult1)+mult1*xa; 
                    som_weights[i][j][1]=som_weights[i][j][1]*(1.0-mult1)+mult1*ya; 
                    som_weights[i][j][2]=som_weights[i][j][2]*(1.0-mult1)+mult1*za; 
                } 
                else 
                { 
                    som_weights[i][j][0]=som_weights[i][j][0]*(1.0-mult2)+mult2*xa; 
                    som_weights[i][j][1]=som_weights[i][j][1]*(1.0-mult2)+mult2*ya; 
                    som_weights[i][j][2]=som_weights[i][j][2]*(1.0-mult2)+mult2*za; 
                } 
             } 
           } 
        } 

Adjustment of the Learning Factor. The learning factor adjustment is changed slightly so that the next change to the node 
weights will be slightly smaller. In this step rubble is a constant defined at the start of the program, and cycle counts the 
number of cycles that have passed. As cycle increases, the size of adjustment gradually falls. 

/* The size of the adjustment to the weights each cycle depends 
  upon an (arbitrarily-chosen) constant called rubble. It also depends 
  on the number of cycles, since we wish the size of the adjustment to 
  gradually diminish as the calculation proceeds. The form of 
  the expression which defines the variable adjustment is not prescribed, 
  and the values 200.0 and 150.0 in the line below, as well as the  
  dependence upon the square of the cycle number, can all be modified in  
  order to test how convergence of the map is affected. */ 
  adjustment=rubble/(200.0+(cycle*cycle)/150.0); 
                                

If the node weights have not converged, the calculation then 
continues with the selection of a fresh sample. 

Figures 4�13 show how the map evolves during a typical 
run. The gradual development of order from an initially 
chaotic state is very evident. 

Figures 14�18 illustrate the application of SOMs to a similar 
problem, but one in which the method chosen to display the 
progress of the algorithm is quite different. In this instance, 
each data sample consists of just two values, chosen within the 
range 0-(mapsize-1). To follow the evolution  
of node weights, an unusual method of plotting them is 
chosen. The weights of node (i, j) are interpreted as x and y 
coordinates, and a spot is drawn at the position defined by x 
and y. Spots are drawn for every node, and spots 
corresponding to neighboring nodes are then joined with a 
line. Thus, in this square array of nodes, the spot whose 
position is determined by the weights at node (4, 7), for 
example, is joined to the spots drawn for nodes (3, 7), (5, 7), 
(4, 6) and (4, 8). Because the node weights are initially chosen 
at random, the pattern of spots is initially chaotic; as the map is 
run; however, structure develops in a fashion which is related 
very directly to the pattern of input data. 

The operation of this map can be seen at 
http://physchem.ox.ac.uk/~hmc/aistuff/squaresompage1.html 

How Can the SOM be Used in Chemistry? 

SOMs are a means by which we can identify correlations in 
complex data sets. They, therefore, potentially have value in 
assessing a wide variety of data in chemistry and in other 
fields. Gasteiger and Zupan [7, 8] and Goodacre [9] give a 
range of examples of how one may take advantage of the 

special properties of these networks, and several of these are 
appropriate for undergraduate research projects. 
The classic application of SOMs has been to the analysis of 
olive oils. Olive oil is both a commodity product and a high-
value consumer product. Large sums of money could be (and 
have been) made if high-quality, high-priced olive oil is 
adulterated by lower quality cheaper oil. Like many natural 
products, olive oil is a complex mixture of chemicals, and 
identifying the region of origin is not simple. SOMs have been 
used to tackle the problem of identification with great success, 
using GC/MS data as input, and more recent studies [10] 
(Cartwright and George 2000) have extended the method to 
investigate the origin and oxidative degradation of wine. 
SOMs could be applied in a similar way to any natural product 
whose quality varies with region, method of production, etc.. 

The analysis of IR spectra is well suited to attack by SOMs, 
in view of the complexity of the spectra, and the ease with 
which they can be gathered. A later paper in this series will 
describe the application of a feedforward neural network in 
their analysis, but SOMs can also be used with success, as they 
can for the analysis of NMR spectra. 
Finally, a general class of problems results from the need to 
predict chemical activity from molecular structure. The 
prediction required may be quite general (of the rate of 
environmental degradation, for example) or more specific (the 
biological activity in respect of a particular bacterium, perhaps, 
or the ease with which a particular bond in a molecule is 
broken). Once again, provided a sufficiently comprehensive 
database is available, SOMs can be widely applied to this type 
of problem. 
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Figure 4. At the start of the algorithm. Because node weights are 
chosen at random, there is no structure. 

 
Figure 5. Cycle 11. The highlighted regions show where the first few 
�winning nodes� have been found. 

 
Figure 6. Cycle 202. All nodes have now been modified by the 
calculation, but still no structure is apparent. 

 

Figure 7. Cycle 4403. Some color separation is starting to appear, 
notably in the development of dark regions in the center of the map. 

 
Figure 8. Cycle 5976. 

 
Figure 9. Cycle 8137. Development of the different regions is now 
becoming pronounced. 
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Figure 10. Cycle 9440. 

 
Figure 11. Cycle 11110. 

 
Figure 12. Cycle 13050. 

 
Figure 13. Cycle 20842. The node weights are now essentially stable 
and the map is complete. 

 
Figure 14. Near the start of the algorithm, the arrangement of nodes, 
reflecting their weights, is random. 

 
Figure 15. Cycle 109. The network remains very disorganized, but 
there are clear signs of structure developing. 
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Figure 16. Cycle 191. The structure is becoming clear. Node spacing 
is now much more even than earlier in the calculation, though the 
structure remains irregular. 

 
Figure 17. Cycle 420. The final form of the map is becoming well 
defined. 

 
Figure 18. Cycle 1400. The node weights have now almost fully 
converged. 

Supporting Information Available Online 

Supporting materials are available from both The Chemical 
Educator web site and from the author�s web site located at 
http://physchem.ox.ac.uk/~hmc/papers/chedr2000a/chedr2000
aindex.html. 

The URL�s given above can be used to access the following 
material related to this paper: 

(a) Online (color) copies of Figures 1 to 18. 
(b) HTML pages to run a Java program that illustrates the 

development of maps of the type shown in Figure 1 and 
Figures 4�13. 

(c) Program listing of the Java applet used to generate Figure 
1 and Figures 4�13. 

(d) HTML pages to run a Java applet illustrating the 
development of the map shown in Figures 14�18. 

(e) Program listing for the program used to generate Figures 
14�18. 
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