
196 Chem. Educator 2000, 5, 196�204

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Undergraduate Projects in the Application of Artificial Intelligence to
Chemistry. II Self-Organizing Maps

Hugh Cartwright

Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ,
England, hugh.cartwright@chem.ox.ac.uk

Abstract: It is often necessary in science to identify samples that have features in common. For example, one
might wish to find those NMR spectra in a large database that have similar patterns of resonances or identify
samples amongst a large number of specimens of river water that analysis shows have similar biochemical
oxygen demand, heavy metals concentration, organochlorine content, and so on.

The determination of relationships among samples is a task to which Artificial Intelligence is increasingly
being applied. In this paper, we investigate the Self-Organizing Map (SOM), whose role is to perform just this
kind of task; in other words, to cluster data samples so as to reveal the relationships that exist among them. The
self-organizing map is a method, which, unusually, combines a mathematical foundation with an intuitive
interpretation.

We will describe how a simple SOM operates, what kinds of data may be analyzed using one, and how a
computer program to run a SOM can be written by anyone-whether student or teacher-with modest programming
skills. Portions of sample source code are included in this paper, and program listings for the examples that are
discussed are available in the supporting materials. The supporting files can also be used to see the maps in
operation.

Introduction

Let us begin at the end, so to speak, by considering a
completed map that illustrates what the SOM is aiming to
produce. Figure 1 shows the result of an analysis of a typical
set of data (individual color versions of all figures are
available in the supporting materials). Running one of the
programs described in this paper can generate this type of map.

The two-dimensional map shown in Figure 1 resembles a
contour view of a land map, and it is divided into different
regions distinguished by their color. Every sample within the
database used to create the map can be allocated to a particular
square in the map, and similar samples are allocated to squares
that are close together. Similar samples are thus clustered, and
this clustering of samples helps the user to identify the factors
that samples have in common. In this way the map brings
about a kind of rationalization of the data. The mechanism by
which this is accomplished forms the focus of this paper.

Large collections of data in which there are multiple non-
linear correlations between the different samples are generated
routinely in chemistry; indeed, gathering and analyzing the
data that constitute such sets might be regarded as one of the
central activities in science.

To make full use of the data, one wants to tease out the
relationships that link different samples, but extracting these
relationships may be difficult, especially if each sample is
made up of many separate items of data (such as the intensity
of light absorption at a number of different wavelengths, or the
results of elemental analysis of mixed minerals). It is not
always possible to express the relationships in a readily
digestible algebraic form, so numerical methods, such as
Principal Components Analysis [1] may be used to seek
regularities in the data. However, these methods are limited
when analyzing complex data sets in that they generally yield

either an abstract representation of the data or one that is cast
in three, four, or more dimensions. This introduces difficulties
in interpretation for any users who are not specialists in the
field of numerical analysis.

Often a visual rather than an analytical representation of the
data will effectively reveal how samples are related to each
other, and in such cases a SOM may be used to arrange the
data so that useful relationships among the parameters are
presented in a readily interpreted form. A SOM is normally
constructed in two dimensions, and this makes its visual
interpretation particularly straightforward.

Principles of the Self-Ordering Map

The development of the self-organizing map (or self-
ordering map) can be traced back to pioneering work by
Kohonen [2]; in fact, such maps are the end result of analysis
by what are known as Kohonen networks. The SOM is a type
of neural network (to be discussed in a later paper), in which a
number of identical simple processing units are linked together
and function co-operatively.

The principle steps in the construction of a map are outlined
in this section. Later, each step will be discussed in greater
detail and illustrated with segments of Java source code. Those
unfamiliar with Java should find the code relatively
straightforward to understand and should have little difficulty
in translating it into Fortran, Basic or other computer
languages.

A SOM is a computer program whose role is to compress
multidimensional data on to a map of lesser dimension
(usually two). At its heart is a small memory with a simple
structure. In this memory the SOM stores its accumulated
knowledge at a set of nodes. Approximately 30 to 5000 nodes,

Undergraduate Projects in the Application of Artificial Intelligence Chem. Educator, Vol. 5, No. 4, 2000 197

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Figure 1. A typical completed self-organized map.

depending upon the scale of the problem, are arranged in a
regular two-dimensional structure, in which each node has
three, four or six, neighbors (Figures 2a, 2b, 2c). The nodes
form a triangular, rectangular, or hexagonal array [3].

At each node is stored a set of weights (Figure 3). It is these
weights that constitute the memory of the map; the
calculations that are performed by the algorithm consist of the
determination of suitable values for each weight. Once
appropriate values for these weights have been found, the
completed map, which typically takes the sort of form shown
in Figure 1, is ready for use.

At the start of the calculation, the SOM knows nothing
about the data it is to interpret, and, because the weights
represent the accumulated knowledge of the map, they initially
are set to random values. As the map develops, the weights
gradually change according to the procedure given below. The
effect is that the memory of the map, stored in these weights,
slowly evolves to embody a useful representation of the data.

As the map learns about the data, it organizes it in ways that,
one hopes, will reveal valuable correlations. The map receives
no feedback from the user or the database; this is a type of
unsupervised learning-in other words, the algorithm learns
about the data merely by inspecting it; no outside intervention
or guidance from the user is necessary.

Before considering the individual steps involved in
constructing a map, the reader may wish at this stage to go to
the supporting materials and run the �colourmap� application
to see how a map such as that shown in Figure 1 evolves.

Let us see now how this learning occurs. Suppose we have
access to a large set of data, in which every data sample
consists of three values. A portion of such a set is shown in
Table 1.

When constructing a SOM, the number of weights at each
node is always set by the algorithm to equal the number of
parameters for each sample, so in this example each node
stores three weights.

The algorithm proceeds in a series of cycles, as follows.

a

b

c

Figure 2. The arrangement of nodes in (a) triangular, (b) square and
(c) hexagonal maps.

198 Chem. Educator, Vol. 5, No. 4, 2000 Cartwright

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Table 1. A Portion of a Data Set for Analysis

Sample Parameter 1 Parameter 2 Parameter 3
S1 6.7 1.8 2.3
S2 2.9 0.9 -1.4
S3 8.2 6.9 11.8
S4 4.8 4.8 -1.8
S5 2.1 0 -1.9
S6 6.7 0.2 0.1
S7 11.1 0.7 -12.1
...

Figure 3. Node weights in a square map.

Initialization. At the start of the calculation, the weights at
all nodes are set to random values.

Selection of Sample. A sample is chosen at random from
the data set.

Calculation of Deviations. The value of each parameter for
the chosen sample is compared in turn with the corresponding
weight at the first node and the total difference between
sample values and node weights is calculated. Thus, if the
weights at the first node were {2.7, 4.1, 0.4} and sample S5
were chosen, the difference could be calculated as the sum of
the absolute magnitude of the differences:

 1 2.7 2.1 4.1 0 0.4 (1.9) 7.0n
i iid w p== − = − + − + − − =∑

in which n is the number of parameter values, wi the ith weight
at the current node, and pi the ith parameter value for the
current sample. Alternatively, the Euclidean distance could be
used:

() () ()(){ }

2
1

1/ 222 2

()

2.7 2.1 4.1 0 0.4 1.9 4.7

n
i iid w p== −

= − + − + − =

∑

Any �reasonable� method of calculating the difference
between sample parameters and node weights may be adopted.
This difference is determined for every node in the map.

Selection of the Winning Node. The winning node is
identified as the one whose weights most closely resemble the
sample data; that is, the node for which the difference
calculated in step 3 is a minimum.

Modification of Weights at the Winning Node. The node
weights at the winning node are now modified slightly to make
them more closely resemble the sample data.

 ()* * 1i i iw w pα α= − +

In this equation wi* represents the ith weight at the winning
node, pi is the corresponding parameter value for the sample

being used, and α is a learning factor whose size determines
the extent to which the node weights are adjusted.

Modification of Weights at Neighboring Nodes. The
adjustment of node weights is not limited to the winning node,
but also extends to nodes nearby. Node weights in the
neighborhood of the winning node are modified in the same
way as those at the winning node, but by an amount that
diminishes with distance from it.

Selection of a Fresh Sample. The learning factor, α, which
scales the size of the adjustment to node weights, is now very
slightly reduced. This ensures that modifications to the node
weights, which may be quite large at the start of the
calculation, gradually diminish as the algorithm runs. If the
node weights have not converged, the algorithm returns to
step 2.

How Might We Use SOMs?

After a large number of passes have been made through the
sample data the node weights will converge to stable values;
further cycles will produce little further change. Before we
consider the steps outlined above in a little more detail, let us
consider how we might use the completed map. There are two
principle ways in which a SOM can be of value.

Recognition of Dominating Similarity Factors. Figure 1,
in which the nodes are drawn in a color determined by the
node weights, shows how nodes with similar weights cluster
together. This suggests one way in which the map might be
used. Consider what happens when we take a sample from the
data set and feed it into the map. The algorithm inspects each
node to find the one whose weights most closely resemble the
sample parameter values and identifies it as the �winning
node�. We can say that the sample points at this node. Every
sample must point at some node in the map, and we recognize
that samples that point to the same node or to nodes that are
close together on the map must share similar parameter values.

Now it may seem that the map has not done anything very
smart in pointing out to us that several samples in the database
are similar. Could we not have recognized this ourselves by
inspecting the data and picking out the �similar� samples? If
the data are very simple (and very limited in number) this
might well be possible; but if each sample consists of perhaps
fifteen or twenty parameter values, and there are many
samples, searching for similar samples �by eye� is not
practicable.

The map, in identifying similar samples, has thus revealed
regularities that it may be difficult, or impossible, to spot
without the help of some kind of automated procedure.

Once the map has highlighted similar samples for us, we can
try to rationalize the clustering of samples. By inspecting the
parameter values for samples that cluster together, we may be
able to understand what features of the parameters cause the
clustering. For example, using SOMs, Barlow showed that the
biological activity of histamine H2 agonists could be related to
the electrostatic potential around them [4], Zupan found that
automotive paint samples could cluster spontaneously into
groups which differed in their resistance to weathering, and
that this could then be related to the composition of the paint.
Cartwright and Kiernan [5] have shown that geochemical and
analytical data, such as sample depth and oxygen index, can be
used to cluster coal samples according to their potential value
in yielding hydrocarbons.

Undergraduate Projects in the Application of Artificial Intelligence Chem. Educator, Vol. 5, No. 4, 2000 199

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

In each case useful deductions can be made by allowing the
SOM to cluster data, and then inspecting these clusters to see
what characteristics link the different samples together.

Prediction. Suppose we have prepared a complete map
through analysis of some suitable database. If a sample is
drawn from the database and fed into the map, we know that it
will point to a particular node. However, we are not restricted
to using samples drawn only from the database that was used
to construct the map. If a fresh sample, not contained within
the database used to generate the map, is fed into it, the new
sample will itself point to some particular node, and by
comparing the sample with others that point to the same
region, we can gain useful information.

This is particularly helpful if the value of one or more
parameters for the new sample is unknown. An interesting
example of this technique has been reported by Walker, Cross
and Harrison [6] using Growing Cell Structure Networks
(GCSN), a close relative of the SOM. They analyzed data from
fine-needle aspirates of breast tissue taken from women during
the diagnosis of possible breast cancer. A database of 692
samples, each sample consisting of eleven values, was
assessed using a GCSN. The map organized the data in such a
way that samples derived from patients who tested positive for
breast cancer were clustered in one region, and samples
derived from patients who tested negative were clustered in

another part of the map. By then feeding in data from patients
whose diagnosis was uncertain and noting to which region of
the map the sample pointed, it was possible to use the trained
map as a diagnostic tool. This kind of procedure is typical of
the predictive use of the SOM, and is probably its most
powerful and useful feature.

Coding of a self-Ordering Map

In this section we consider the coding of a SOM in a little
more detail.

Initialization. As a first step the memory of the map must
be cleared. For the examples that are used to illustrate this
paper the map is square, and of dimension mapsize ×
mapsize. The node weights are stored in the three-
dimensional array som_weights[][][], in which the
first two dimensions are the (x, y) coordinates of the map
nodes, and the third identifies a particular weight at that node.
Initially, therefore, we set each entry in this weights array to a
randomly chosen value (though it is possible to set them to a
single starting value without adversely affecting the
calculation). The value is generally chosen to lie within the
range of values spanned by the data values, if this is known in
advance.

// Initialize the node weights with random values between 1 and mapsize.

mapsize1=mapsize-1;
for (i=0; i<mapsize; i++)
 {
 for (j=0; j<mapsize; j++)
 {
 if (zeroweights) // Nodes start with identical weights
 {
 som_weights[i][j][0]= mapsize1/2;
 som_weights[i][j][1]= mapsize1/2;
 som_weights[i][j][2]= mapsize1/2;
 }
 else // Nodes start with random weights
 {
 som_weights[i][j][0]=1+(mapsize1)*rs.nextFloat();
 som_weights[i][j][1]=1+(mapsize1)*rs.nextFloat();
 som_weights[i][j][2]=1+(mapsize1)*rs.nextFloat();
 }
 }
 }

Figure 4 shows how the map might look at the start of a calculation where the three weights at each node have been interpreted as
RGB values to make it easier to follow the development of the map. Because the weights have been chosen at random, the initial
colors of the nodes are also random and the map shows no discernible pattern.

Sample Selection. In this first example, every sample in the database consists of three values. We could start the calculation by
generating a database of samples, but it is simpler to create a fresh random data point (xa, ya, za) whenever a new sample is needed.
(On the face of it, it seems remarkable, even counterproductive, to use random data. How can the map find order in entirely random
samples? Recall, however, that the ordering that occurs is spatial, that is, samples are spread across the map in such a fashion that
samples with very different parameter values are positioned far apart from each other. Ordering is thus possible even of random
data!)

/* Generate a random data point to feed into the map. */
 r=280.0*complexity*rs.nextFloat();
 theta=8.0*rs.nextFloat();
 phi=3.0*rs.nextFloat();
 xa=r*Math.sin(theta)*Math.cos(phi);
 ya=r*Math.sin(theta)*Math.sin(phi);
 za=r*Math.cos(phi);

200 Chem. Educator, Vol. 5, No. 4, 2000 Cartwright

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Calculation of Deviation. The sample data (xa, ya, za) are now compared, in turn, with the weights at each node. In this program,
we sum the absolute differences between the values in the sample and the corresponding weights at the node although, as
mentioned above, other ways of calculating this difference exist.

diff=Math.abs(xa-som_weights[i][j][0])+Math.abs(ya-som_weights[i][j][1])

 +Math.abs(za-som_weights[i][j][2]);

Selection of the Winning Node. The variable diff stores the total difference evaluated in step 4.3. If this difference is the
smallest found so far in the calculation, the current node is the best yet, and its coordinates (i, j) are stored.
/* Find the winning node. Its position is besti, bestj. */

 besti=0;
 bestj=0;

/* bestdiff is the smallest difference found in the current cycle between
 the node weights and the current data point. We start by setting it
 to a number much larger than any difference in the actual calculation
 will be. */

 bestdiff=500.0;
 for (i=0; i<mapsize; i++)
 {
 for (j=0; j<mapsize; j++)
 {

/* diff is calculated at this point, as shown in step 3 above.
 If diff is smaller than the best difference so far, update
 bestdiff, and store the position of the winning node. */

 if (diff<bestdiff)
 {
 bestdiff=diff;
 besti=i;
 bestj=j;
 }
 }
 }

Modification of Weights at the Winning Node. Once the winning node has been found, the weights at this node are updated so
that they more closely resemble the data point just used. The following lines accomplish this.

som_weights[besti][bestj][0]=som_weights[besti][bestj][0]*(1.0-alpha)+alpha*xa;

som_weights[besti][bestj][1]=som_weights[besti][bestj][1]*(1.0-alpha)+alpha*ya;

som_weights[besti][bestj][2]=som_weights[besti][bestj][2]*(1.0-alpha)+alpha*za;

alpha is a factor whose size determines how much the node weights are moved in the direction of the data sample.
Modification of Neighborhood Weights. A similar modification is made to the weights of neighboring nodes, with the size of

the adjustment determined by the value of alpha, diminishing with distance from the node. The coding here is very crude, but this
step is fast so sophistication is not required.

/* In many SOMs the "neighbourhood" around each node within
 which weights are updated consists of the entire map at
 the start of the calculation, and diminishes with time.
 In this example the size of the neighbourhood remains
 unchanged, although the size of the weight adjustment
 diminishes as the calculation proceeds. */

alpha=0.3*adjustment;
 mult2=0.06*adjustment;
 for (i=besti-2; i<=besti+2; i++)
 {
 for (j=bestj-2; j<=bestj+2; j++)
 {
 if (i>=0 && i<mapsize && j>=0 && j<mapsize && !(besti==i && bestj==j))
 {
 if (i>besti-2 && i<besti+2 && j>bestj-2 && j<bestj+2)

Undergraduate Projects in the Application of Artificial Intelligence Chem. Educator, Vol. 5, No. 4, 2000 201

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

 {
 som_weights[i][j][0]=som_weights[i][j][0]*(1.0-mult1)+mult1*xa;
 som_weights[i][j][1]=som_weights[i][j][1]*(1.0-mult1)+mult1*ya;
 som_weights[i][j][2]=som_weights[i][j][2]*(1.0-mult1)+mult1*za;
 }
 else
 {
 som_weights[i][j][0]=som_weights[i][j][0]*(1.0-mult2)+mult2*xa;
 som_weights[i][j][1]=som_weights[i][j][1]*(1.0-mult2)+mult2*ya;
 som_weights[i][j][2]=som_weights[i][j][2]*(1.0-mult2)+mult2*za;
 }
 }
 }
 }

Adjustment of the Learning Factor. The learning factor adjustment is changed slightly so that the next change to the node
weights will be slightly smaller. In this step rubble is a constant defined at the start of the program, and cycle counts the
number of cycles that have passed. As cycle increases, the size of adjustment gradually falls.

/* The size of the adjustment to the weights each cycle depends
 upon an (arbitrarily-chosen) constant called rubble. It also depends
 on the number of cycles, since we wish the size of the adjustment to
 gradually diminish as the calculation proceeds. The form of
 the expression which defines the variable adjustment is not prescribed,
 and the values 200.0 and 150.0 in the line below, as well as the
 dependence upon the square of the cycle number, can all be modified in
 order to test how convergence of the map is affected. */
 adjustment=rubble/(200.0+(cycle*cycle)/150.0);

If the node weights have not converged, the calculation then
continues with the selection of a fresh sample.

Figures 4�13 show how the map evolves during a typical
run. The gradual development of order from an initially
chaotic state is very evident.

Figures 14�18 illustrate the application of SOMs to a similar
problem, but one in which the method chosen to display the
progress of the algorithm is quite different. In this instance,
each data sample consists of just two values, chosen within the
range 0-(mapsize-1). To follow the evolution
of node weights, an unusual method of plotting them is
chosen. The weights of node (i, j) are interpreted as x and y
coordinates, and a spot is drawn at the position defined by x
and y. Spots are drawn for every node, and spots
corresponding to neighboring nodes are then joined with a
line. Thus, in this square array of nodes, the spot whose
position is determined by the weights at node (4, 7), for
example, is joined to the spots drawn for nodes (3, 7), (5, 7),
(4, 6) and (4, 8). Because the node weights are initially chosen
at random, the pattern of spots is initially chaotic; as the map is
run; however, structure develops in a fashion which is related
very directly to the pattern of input data.

The operation of this map can be seen at
http://physchem.ox.ac.uk/~hmc/aistuff/squaresompage1.html

How Can the SOM be Used in Chemistry?

SOMs are a means by which we can identify correlations in
complex data sets. They, therefore, potentially have value in
assessing a wide variety of data in chemistry and in other
fields. Gasteiger and Zupan [7, 8] and Goodacre [9] give a
range of examples of how one may take advantage of the

special properties of these networks, and several of these are
appropriate for undergraduate research projects.
The classic application of SOMs has been to the analysis of
olive oils. Olive oil is both a commodity product and a high-
value consumer product. Large sums of money could be (and
have been) made if high-quality, high-priced olive oil is
adulterated by lower quality cheaper oil. Like many natural
products, olive oil is a complex mixture of chemicals, and
identifying the region of origin is not simple. SOMs have been
used to tackle the problem of identification with great success,
using GC/MS data as input, and more recent studies [10]
(Cartwright and George 2000) have extended the method to
investigate the origin and oxidative degradation of wine.
SOMs could be applied in a similar way to any natural product
whose quality varies with region, method of production, etc..

The analysis of IR spectra is well suited to attack by SOMs,
in view of the complexity of the spectra, and the ease with
which they can be gathered. A later paper in this series will
describe the application of a feedforward neural network in
their analysis, but SOMs can also be used with success, as they
can for the analysis of NMR spectra.
Finally, a general class of problems results from the need to
predict chemical activity from molecular structure. The
prediction required may be quite general (of the rate of
environmental degradation, for example) or more specific (the
biological activity in respect of a particular bacterium, perhaps,
or the ease with which a particular bond in a molecule is
broken). Once again, provided a sufficiently comprehensive
database is available, SOMs can be widely applied to this type
of problem.

202 Chem. Educator, Vol. 5, No. 4, 2000 Cartwright

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Figure 4. At the start of the algorithm. Because node weights are
chosen at random, there is no structure.

Figure 5. Cycle 11. The highlighted regions show where the first few
�winning nodes� have been found.

Figure 6. Cycle 202. All nodes have now been modified by the
calculation, but still no structure is apparent.

Figure 7. Cycle 4403. Some color separation is starting to appear,
notably in the development of dark regions in the center of the map.

Figure 8. Cycle 5976.

Figure 9. Cycle 8137. Development of the different regions is now
becoming pronounced.

Undergraduate Projects in the Application of Artificial Intelligence Chem. Educator, Vol. 5, No. 4, 2000 203

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Figure 10. Cycle 9440.

Figure 11. Cycle 11110.

Figure 12. Cycle 13050.

Figure 13. Cycle 20842. The node weights are now essentially stable
and the map is complete.

Figure 14. Near the start of the algorithm, the arrangement of nodes,
reflecting their weights, is random.

Figure 15. Cycle 109. The network remains very disorganized, but
there are clear signs of structure developing.

204 Chem. Educator, Vol. 5, No. 4, 2000 Cartwright

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)04400-9, 10.1007/s00897000400a, 540196hc.pdf

Figure 16. Cycle 191. The structure is becoming clear. Node spacing
is now much more even than earlier in the calculation, though the
structure remains irregular.

Figure 17. Cycle 420. The final form of the map is becoming well
defined.

Figure 18. Cycle 1400. The node weights have now almost fully
converged.

Supporting Information Available Online

Supporting materials are available from both The Chemical
Educator web site and from the author�s web site located at
http://physchem.ox.ac.uk/~hmc/papers/chedr2000a/chedr2000
aindex.html.

The URL�s given above can be used to access the following
material related to this paper:

(a) Online (color) copies of Figures 1 to 18.
(b) HTML pages to run a Java program that illustrates the

development of maps of the type shown in Figure 1 and
Figures 4�13.

(c) Program listing of the Java applet used to generate Figure
1 and Figures 4�13.

(d) HTML pages to run a Java applet illustrating the
development of the map shown in Figures 14�18.

(e) Program listing for the program used to generate Figures
14�18.

References and Notes

1. Malinowski, E .R.; Howery, D. G. Factor Analysis in Chemistry;
Wiley: New York, 1980.

2. Kohonen, T. Self-organized formation of topologically correct
feature maps. Biol Cybernetics 1982, 43, 59�62.

3. It will be apparent that nodes at the edges of such an array have
fewer neighbors than nodes in the interior and therefore are
qualitatively different from them. It is often helpful to join opposite
edges of the array to form a torus, so that all nodes have the same
number of neighbors. We shall in this paper consider only those
topologies that are nontoroidal, because these are slightly simpler
computationally, but toroidal geometries do not introduce significant
complications.

4. Barlow, T. W.; Self-organizing maps and molecular similarity. J.
Mol. Graphics 1995, 13, 24�27.

5. Cartwright, H. M.; Kiernan, K. Assessment of the hydrocarbon
potential of oil-bearing rocks using self-organizing maps, in
preparation.

6. Walker, A. J.; Cross, S. S.; Harrison, R. F. Visualisation of
biomedical datasets by use of growing cell structure networks: a
novel diagnostic classification technique. The Lancet 1999, 354,
1518�1521.

7. Gasteiger, J.; Zupan, J. Neural networks in chemistry. Angew. Chem.
Int. Enlg. 1993, 32, 503�527.

8. Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug
Design. Wiley: New York, 1999.

9. Goodacre, R. Applications of artificial neural networks to the
analysis of multivariate data. In Intelligent Data Analysis in Science;
Cartwright, H. M., Ed.; Oxford University Press: Oxford, UK, 2000,
123�152.

10. Cartwright H. M.; George, J. The use of self-organizing maps in the
prediction of wine oxidation, in preparation.

http://physchem.ox.ac.uk/~hmc/papers/chedr2000a/chedr2000aindex.html
http://physchem.ox.ac.uk/~hmc/papers/chedr2000a/chedr2000aindex.html

